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Abstract
The subdivision grapE(G) of a graphG is the graph whose vertex set is the union okttef vertices

and the set of edges & in which each edgélVv is subdivided at once a8V and WV .
A Roman dominating function on a subdivision graS(uG) =H is a function f :V(H) - {0,1,3

satisfying the condition that every vertek for which f (u) =0 is adjacent to at least one vertéxfor which
f (V) =2. The weight of a Roman dominating function is tadue f (V(H )) = Z f (V) The minimum
VIV (H
weight of a Roman dominating function on a subdivisgraph H is called the Rom(ar)1 subdivision domination
number of G and is denoted by (G) :
In this paper, we study the Roman domination ibdstision graph S(G) and obtain some results on
Ves (G) in terms of vertices, blocks and other differeatgmeters of the grapfs, but not the members of

S(G) . Further we develop its relationship with othefadent domination parameters G .
Subject classification number: 05C69, 05C70.

Keywords: Graph/subdivision graph/domination number /Romamidation number.

I ntroduction

In this paper, we follow the notations of [2]. Alhe graphs considered here are simple, finite, rivaait and
undirected. As usuaP = |V| and(q= | E| denote the number of vertices and edges of a gtaplespectively.

In general, we uséS> to denote the subgraph induced by the set ofcesrtof S. N (V) and N[V]

denote the open and closed neighborhood of a v&ttex
The degree of a verteXin a graphG is the number of edges & incident withVv and it is denoted by

degv. The maximum(minimum) degree among the vertice$ofis denoted byA(G)(5(G)). A vertex of

degree one is called an end vertex and its neigisbcalled a nonend vertex. A vertakis called a cut vertex if
removing it fromG increases the number of component£of

A subdivision graphS(G) of a graphG is the graph whose vertex set is the union ofstteof vertices
and the set of edges & in which each edgélv is subdivided at once a8V and WV .
A Roman dominating function (RDF) on a grafh= (V, E) is a function f 1V — {0,1,3 satisfying

the condition that every vertett for which f (u) =0 is adjacent to at least one vertéxfor which f (V) =2.
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The weight of a Roman dominating function is théueaf (V) = z f (V) The minimum weight of a Roman
vV

dominating function on a grapKks is called the Roman domination number and is d=hdty yR(G).This

concept has the historical motivation which is saglgd by lan Stewart [3] in his article ‘Scienti’enerican’
entitled “Defend the Roman Empire” and is studigdCockayne et.al[1].

A Roman dominating functiordf = (VO,Vl,VZ) on a graphGis a connected Roman dominating function
(CRDF) onG if <Vl DV2> or <V2> is connected. The minimum weight of a CRDF isezht connected Roman

domination number o5 and is denoted by (G) , see[7].
Analogously, we now define Roman subdivision dorigranumber of a graph as follows.
A Roman dominating function on a subdivision grdphis a function f :V(H) - {O,l,% satisfying

the condition that every vertetd for which f (u) =0 is adjacent to at least one vertéxfor which f (V) =2.

The weight of a Roman dominating function is théueaf (V(H )) = Z(:) f (V) The minimum weight of a
ViV (H

Roman dominating function on a subdivision graghis called the Roman subdivision domination numtfets
and is denoted blxg (G) :

Results
We use the following results for our further result

Theorem A[4]: For any graphG, p—qsy(G).

Theorem B[8]: For any graphs, y(G) S—g.

Theorem C[1]: For any graphG, y(G) < Vs (G) < 2y(G) .

Theorem D[5]: For any treel , J, ( L(T)) <V (T) .

Theorem E[6]: Let T be any tree with every nonend vertex bf adjacent to at least one end vertex. Then
Ve (T)< p—c+1.

Now we list out the exact values ¢fq (G) for some standard graphs.

Theorem1:
1. For any path with at least three vertices

VRS(P3n) =4n. Wheren=1, 2,.....
Ve (Pya) =40 +1.
yRS(P3n+2) :4n+2-

2. For any cycle with at least three vertices
Vs (CSn) =4n.Wheren=1,2,.....

yRS (C3n+l) = 4n+ 2
yRS (C3n+2) = 4n+ 3

3. For any wheel with at least four vertices
Vs (V\/3n+l) =4n+ 2. Wheren=1,2,......

yRS (Vv?,n+2) = 4n+ 4
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yRS (Vv?,n+3) = 4n + 5
4. Forany starK, | with p>2
VRs(K1,p) =p+2.

5. For any complete graph with at least three vertices
Ves (K, ) =2(p-1).
In the following theorem we establish the lower ddor )/ (G) :
Theorem2: Let G be any( p,q) graph with p = 2 vertices. ThenP < J/rg (G) .
Proof: Let G be any( p, q) graph with p > 2 vertices andf = (VO,Vl,VZ) be a J/5-function inS(G) . We
prove the result by induction on the number ofieeg p of G.
AssumeG is a graph withp = 2 vertices. Theny/xg (G) =2=p.
Assume that the result is true for all graphs with= k vertices. Thenyqg (G) 2p.
Let Dgg ={V1,V2, ......... )/n} be the minimal Roman dominating set OS(G) such that
Vs (G) = |DRS|. If G hask+1=p vertices(p = p+1), g >( edges and thi{k +1)th vertex will be

adjacent to at least one vertex Gf gives G . With this new vertex inG , at least one edge will be increased in
G.
Since each edge is subdivided @ . So that two vertices will be increased 81(6') such that one

vertex VLIV, or V, of S(G'), which increases the cardinality d&gg. Clearly Jpg (G) =|DRS|+22 p or
Vs (G) =|DRS| +1> p . Hence by induction)/s (G) >p.

The following lower bounds are immediate.
Corolloryl: For any nontrivial connected grafh, &, (G) + 0, (G) < W (G) .

=Vrs
Corollory2: For any nontrivial connected grafh, @, (G) +0 (G) < Vs (G) .
Theorem3: Let G be any( P, q) graph. ThenPp—Q <}/ (G) .

Proof: For any grapks , by Theorem A,p—(Q < y(G) .

By Theorem B,y(G) < g which givesp—Qq < g <p.

Again by Theorem 2P < Vqo (G) :
Hence P—0 < Vxs (G) :

Theorem4: For any nontrivial connected tree wifd > 3, Jqg (T) =2n, +k wheren, andk are the number of

all nonend vertices and end verticesTofif and only if every nonend vertex df is adjacent to at least two end
vertices.

Proof: Suppose for any tre€ , Jxg (T) = 2I”ll +K. Then we consider the following cases.
Casel: Assume there exists a nonend veréxwhich is adjacent to exactly one end vertex @&de an edge
incident with V. Further N, ={V1,V2, ......... v,

n} Nn=>1be the number of all nonend vertices and
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K={Vi,Vy,comne. V.

} i >2be the number of all end vertices d . Then K—={N(W) n K =V, and
{(nl -v) [ e} =V,, which gives}/xg (T) <2n, +k, a contradiction.
Case2: Assume there exists a nonend vertéxwhich is not adjacent to an end vertex. THgh —u) =V, and
{uOR =V,, which gives s (T) < 2n, +Kk, a contradiction.

Conversely, letf = (VO,Vl,Vz) be a J-function in S(T). Supposen :{vl,vz, ......... v

number of all nonend vertices df is adjacent to at least two end vertices Ahat{vl,vz, ......... v

number of all end vertices df . Then we consider the following cases.
Casel: Suppose H1 W N, be the number of nonend vertices df adjacent exactly two end vertices. Then

H, =V, andk =V,. or Iet{vj} be the set of nonend vertices Si(T) adjacent to end vertices. Suppose there
exists at least two vertices %} [ {VJ—} such that{\/i} UV,. Then there exists at least one vertexofl] H,
such thatn, [V, and{ N(n,)n k} =V, . Hence Vs (T) = 2|V2| +|V1| =2n+K.

Case2: SupposeH2 W N, be the number of nonend vertices bf adjacent at least three end vertices. Then
H, =V, andk =V,. Henceyxs (T) = 2|V, | +|V,| = 2n, +k.

Theorem5: For any graptG , ZV(G) < Vs (G) :

P
2
Also from Theorem2,p < Vno (G) .
Hence ZV(G) < Vs (G) :

Theorem6: For any nontrivial connected trek with p=3, Vi (T) =2V (T) if and only if every nonend

Proof: By Theorem B,y(G) <—, then2y(G) <p.

vertex of T is adjacent to exactly two end vertices.
Proof: Let f =(VO,V1,V2) be a Ji-function in S(T) and f' =(V0',Vl' ,VZ') be a J -function in T .

Supposen, :{vl,vz, ......... yn} be the set of all nonend vertices bf and K ={V1,V2, ......... )/i} be the set of

all end vertices ofl . Then we consider the following cases.
Casel: Supposen, ={V1,V2, ......... yn} [J n, be the set of nonend vertices binot adjacent to end vertex. Then

OvOn,, vOV, in T. But vOV, or V, or V, in S(T). If vOV,, let {q;i = 2} be the number of edges
incident with v, then for{ej;j =]} O{e}, {ej} OV, .1f vOV,, let {q;k= 2} be the number of edges
incident with v, then{q(} UV, If vOOV,, then there exists the edge[saﬂ; m= 2} incident with vV such that
{Qﬂ} [1V, , which gives2) (T) > Ves (T) , a contradiction.

Case2: Supposel, ={V1,V2, ......... ,Vn} [J n, be the number of nonend verticesTofadjacent to exactly one end

n, :{vj} : Iet{ej} O{e}. D{ej} incident toD{VJ—} On, such thaf v [ e].} =V, and{N(v)nk} =V,
in S(T) : But{n4 O n5} =V, andV', = @, which gives2)/ (T) > Vs (T) , a contradiction.

vertex and{q} be the number of all end edges dt. Then [ {{ n4} ,{ n5}} O{n} such thatn, ={V-} and
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Case3: Supposen; ={V1,V2, ......... )/n} [J N, be the number of nonend vertices Bf adjacent to at least three
end vertices. Then{n} =V, and {N (ng) n k} =V,. But {n} =V, and V, =@, which gives
2Vnc (T) < Vs (T) , a contradiction.
Hence all the above cased)q (T) <Vrs (T) :

Conversely, letfT be a tree with every nonend vertéfq} of T adjacent to exactly two end vertices.

Then{n} =V, andk =V, in S(T). But{n} =V, andV', = @, which gives 2, (T) = Vs (T) . Hence
the proof.
Theorem7: Let G be any graph. The, (G) < Vs (G) .

Proof: By Theorem C J (G) < ZV(G) :
Also by Theorem 52y(G) < Ves (G) :
Hence V5 (G) < Vs (G) :

Theorem8: Let T be a tree with every nonend vertex ®f adjacent to at least one end vertex. Then
Ves (T) > p—c+1 whereCbe the number of cut vertices &f.

Proof: Let f = (VO,Vl,VZ) be a J/5-function in S(T). Supposen, ={V1,V2, ......... )/n} be the number of all

nonend vertices adjacent to exactly one end veneixi, :{vl,vz, ......... )/i} be the number of nonend vertices

adjacent to at least two end vertices, @dte the number of cut vertices d@f and K be the number of all end
vertices of T . Then we consider the following cases.

Casel:  Suppose M =@. Then |n|=|C|=N,| and {N(n,)nk}=V,. Hence
Ves (T) =2V, | +]V)| > p-c+1.

Case2: Supposen, # @. Then O{{n,} {n}} O{n} such thatn, ={v} andn, ={v;} . O the set of edges
{g} incident with {v}On, such that {gOv}=V, and {N(vj) n k} =\,, which gives
Vis (T) =2V,| +|Vy| > p—c+1.

Now from Theorem D, we can maHe(T) =N such thatyj (T) is a Roman line domination number.
In the following theorem, we present our conceghwjiy, (T) .

Theorem9: For any treel , Vg (T) < Vers (T) .

Proof: By Theorem D,V (T) < Vs (T) :

Also by Theorem 74 (G) < Vrs (G) :

Hence V4 (T) < Vs (T) .

Again the following theorems establish the loweui for V¢ (G)

Theorem10: Let T be a tree with every nonend vertex &f adjacent to at least one end vertex. Then
Ve (T) < Vs (T).
Proof: By Theorem E Vs, (T) < p—c+1.
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Also by Theorem 80— C+1< J/o (T) .

Hence Vx, (T) < Vs (T) :

Theorem11: For any graphG with p = 2 vertices, Ve (G) < Vrs (G) .

Proof: Let G be a graph with p=>2 vertices,f = (VO,Vl,VZ) be a Jy-function in S(G) and

f = (VOI,VII ,V'z) be a )/ -function in G. We prove the result by induction on the numbevertices p of

G.
AssumeG is a graph withp = 2. Then V. (G) =2 and Vg (G) =2= Ve (G) :

Assume the result is true for all grap@s with p =k . Then Y/ (G) < Vrs (G) :
Let Dps ={V;,Vy,eene. v,

n

} be the minimalyi,-set of S(G) and Dy :{vl,vz, ........ v

} be the
minimal Vg -set of G such thatyg (G) = | DRS| and Ve (G) :|DRC| respectively. Suppos& has(k +l)
vertices and thi{k +1)th vertex is adjacent to at least one verteXzf Then we consider the following cases.

th . _ . .
Casel: Suppose(k +1) vertex is adjacent to at least one vertex[df. . Then we consider the following
subcases.

Subcasel.1: Assume(k +1)th vertex is adjacent to/ 1V, of D, which generateD .. Then D ¢ be the
Roman connected dominating set O‘B(G) such that ‘DRC‘ :|DRC| and ‘D'RS‘ >|DRS|. Hence
Ve (G) < Vs (G).

Subcasel.2: Assumeu 1V, andV be a(k +1)th vertex of G . If V is adjacent tal. Thenu 0V, and vJV,.
But ullV, andv0V,. CIearIy‘D'RC‘ =|DRC +]1 and‘D'RS‘ >|DRS| . Hence Vi (G) < Vs (G).

Subcasel.3: Assume(k+1)th vertex is adjacent to(V, (JV,). Then ‘D'RC‘=|DRC|. But ‘D'RS‘>|DRS|.
Henceyqe (G) < Vs (G) :

Case2: Suppose(k +1)th vertex is adjacent to at least one verteof- D, , which means(k +1)th vertex is
adjacent tow 1V . Then‘D'RC‘ 2|DRC| . But ‘D'RS‘ >|Dgg|. Henceype (G) <Vrs (G) :

From all the cases, by induction we haye (G) < Vis (G) -

Theorem12: For any nontrivial tred with N blocks, Vg (T) <2n.

Proof: Let T be any nontrivial tree with blocks and f = (VO,Vl,Vz) be a J/5-function in S(T). We prove
the result by induction on the number of blod¢ksf T .
AssumeT be a tree withn =1 block. ThenT =P, . Hence J/xs (T) =2=2x1= 4.

Assume the result is true for all the trees witkr K blocks. Theny/xg (T) <2n.

Let Dgg ={V1,V2, ......... ,V} be the minimal;-set of S(T) such thats (T) =|DRS|. If T has

n

k+1 blocks, p'= p+1 vertices, >q+1 edges and thik +1)" block is adjacent to at least one block of
T . With this new block, one vertex and one edge béllincreased i . Since each edge df subdivides at once,
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hence two vertices will be increased in correspmgmoS(T). So that cardinality ofDgg will be increased in

S(T) . Hence Y/g (T) <2n.

Finally we obtain the Nordhauss-Gaddum type results
Theorem13: For any graphG with p= 2,

1 Vus(G)* Vis (6) <3p-1

, Ves(G) s (G) < (p1y
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