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Abstract 

   The subdivision graph ( )S G  of a graph G  is the graph whose vertex set is the union of the set of vertices 

and the set of edges of G  in which each edge uv  is subdivided at once as uw  and wv . 

 A Roman dominating function on a subdivision graph ( )S G H=  is a function ( ) { }: 0,1,2f V H →  

satisfying the condition that every vertex u  for which ( ) 0f u =  is adjacent to at least one vertex v  for which 

( ) 2f v = . The weight of a Roman dominating function is the value ( )( ) ( )
( )v V H

f V H f v
∈

= ∑ . The minimum 

weight of a Roman dominating function on a subdivision graph H  is called the Roman subdivision domination 

number of G  and is denoted by ( )RS Gγ . 

 In this paper, we study the Roman domination in subdivision graph ( )S G  and obtain some results on 

( )RS Gγ  in terms of vertices, blocks and other different parameters of the graph G , but not the members of 

( )S G . Further we develop its relationship with other different domination parameters of G . 

Subject classification number: 05C69, 05C70. 
 
Keywords: Graph/subdivision graph/domination number /Roman domination number.  
 

     Introduction 
 
In this paper, we follow the notations of [2]. All the graphs considered here are simple, finite, nontrivial and 

undirected. As usual p V=  and q E=  denote the number of vertices and edges of a graph G  respectively. 

In general, we use S  to denote the subgraph induced by the set of vertices of S . ( )N v  and [ ]N v  

denote the open and closed neighborhood of a vertex v . 

The degree of a vertex v in a graph G  is the number of edges of G  incident with v  and it is denoted by 

degv . The maximum(minimum) degree among the vertices of G  is denoted by ( ) ( )( )G Gδ∆ . A vertex of 

degree one is called an end vertex and its neighbor is called a nonend vertex. A vertex v  is called a cut vertex if 

removing it from G  increases the number of components of G . 

A subdivision graph ( )S G  of a graph G  is the graph whose vertex set is the union of the set of vertices 

and the set of edges of G  in which each edge uv  is subdivided at once as uw  and wv . 

A Roman dominating function (RDF) on a graph ( ),G V E=  is a function { }: 0,1,2f V →  satisfying 

the condition that every vertex u  for which ( ) 0f u =  is adjacent to at least one vertex v  for which ( ) 2f v = . 



[Muddebihal, 3(3): March, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[1441-1447] 

 

The weight of a Roman dominating function is the value ( ) ( )
v V

f V f v
∈

=∑ . The minimum weight of a Roman 

dominating function on a graph G  is called the Roman domination number and is denoted by ( )R Gγ .This 

concept has the historical motivation which is suggested by Ian Stewart [3] in his article ‘Scientific American’ 
entitled  “Defend the Roman Empire” and is studied by Cockayne et.al[1]. 

A Roman dominating function ( )0 1 2, ,f V V V=  on a graph G is a  connected Roman dominating function 

(CRDF) on G  if 1 2V V∪  or 2V  is connected. The minimum weight of a CRDF is called a connected Roman 

domination number of G  and is denoted by ( )RC Gγ , see[7]. 

Analogously, we now define Roman subdivision domination number of a graph as follows. 

A Roman dominating function on a subdivision graph H  is a function ( ) { }: 0,1,2f V H →  satisfying 

the condition that every vertex u  for which ( ) 0f u =  is adjacent to at least one vertex v  for which ( ) 2f v = . 

The weight of a Roman dominating function is the value ( )( ) ( )
( )v V H

f V H f v
∈

= ∑ . The minimum weight of a 

Roman dominating function on a subdivision graph H  is called the Roman subdivision domination number of G  

and is denoted by ( )RS Gγ . 

 
Results 
We use the following results for our further results. 

Theorem A[4]:  For any graph G , ( )p q Gγ− ≤ . 

Theorem B[8]: For any graph G , ( )
2

p
Gγ ≤ . 

Theorem C[1]:  For any graph G , ( ) ( ) ( )2RG G Gγ γ γ≤ ≤ . 

Theorem D[5]:  For any tree T , ( )( ) ( )R RL T Tγ γ≤ . 

Theorem E[6]:  Let T  be any tree with every nonend vertex of T  adjacent to at least one end vertex. Then 

( ) 1Rn T p cγ ≤ − + . 

Now we list out the exact values of ( )RS Gγ  for some standard graphs. 

Theorem1: 
1. For any path with at least three vertices 

( )3 4RS nP nγ = . Where 1, 2,......n =  

( )3 1 4 1RS nP nγ + = + . 

( )3 2 4 2RS nP nγ + = + . 

2. For any cycle with at least three vertices  

( )3 4RS nC nγ = . Where 1, 2,......n =  

( )3 1 4 2RS nC nγ + = + . 

( )3 2 4 3RS nC nγ + = + . 

3. For any wheel with at least four vertices 

( )3 1 4 2RS nW nγ + = + . Where 1, 2,......n =  

( )3 2 4 4RS nW nγ + = + . 
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( )3 3 4 5RS nW nγ + = + . 

4. For any star 1,pK  with 2p ≥  

( )1, 2RS pK pγ = + . 

5. For any complete graph with at least three vertices  

( ) ( )2 1RS pK pγ = − . 

In the following theorem we establish the lower bound for ( )RS Gγ . 

Theorem2: Let G  be any ( ),p q  graph with 2p ≥  vertices. Then ( )RSp Gγ≤ . 

Proof: Let G  be any ( ),p q  graph with 2p ≥  vertices and ( )0 1 2, ,f V V V=  be a Rγ -function in ( )S G  . We 

prove the result by induction on the number of vertices p of G . 

Assume G  is a graph with 2p =  vertices. Then ( ) 2RS G pγ = = . 

Assume that the result is true for all graphs with p k=  vertices. Then ( )RS G pγ ≥ . 

Let { }1 2, ,.........,RS nD v v v=  be the minimal Roman dominating set of ( )S G  such that 

( )RS RSG Dγ = . If G  has '1k p+ =  vertices '( 1)p p= + , 'q q>  edges and this ( )1
th

k +  vertex will be 

adjacent to at least one vertex of G  gives 'G . With this new vertex in 'G , at least one edge will be increased in 
'G . 

Since each edge is subdivided  in 'G . So that two vertices will be increased in ( )'S G  such that one 

vertex 2v V∈  or 1V  of ( )'S G , which increases the cardinality of RSD . Clearly ( ) '2RS RSG D pγ = + ≥  or 

( ) '1RS RSG D pγ = + ≥ . Hence by induction, ( ) '
RS G pγ ≥ . 

 
The following lower bounds are immediate. 

Corollory1: For any nontrivial connected graph G , ( ) ( ) ( )0 0 RSG G Gα β γ+ ≤ . 

Corollory2: For any nontrivial connected graphG , ( ) ( ) ( )1 1 RSG G Gα β γ+ ≤ . 

Theorem3: Let G  be any ( ),p q  graph. Then ( )RSp q Gγ− < . 

Proof: For any graphG , by Theorem A, ( )p q Gγ− ≤ . 

By Theorem B, ( )
2

p
Gγ ≤ , which gives 

2

p
p q p− ≤ < . 

Again by Theorem 2, ( )RSp Gγ≤ . 

Hence ( )RSp q Gγ− < . 

Theorem4: For any nontrivial connected tree with 3p ≥ , ( ) 12RS T n kγ = +  where 1n  andk  are the number of 

all nonend vertices and end vertices of T  if and only if every nonend vertex of T  is adjacent to at least two end 
vertices. 

Proof: Suppose for any tree T , ( ) 12RS T n kγ = + . Then we consider the following cases. 

Case1: Assume there exists a nonend vertex v  which is adjacent to exactly one end vertex and e  be an edge 

incident with v . Further { }1 1 2, ,........., nn v v v=  1n ≥ be the number of all nonend vertices and 
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{ }1 2, ,........., ik v v v=  2i ≥ be the number of all end vertices of T . Then 1{ ( ) }k N v k V− ∩ =  and 

{ }1 2( )n v e V− ∪ = , which gives ( ) 12RS T n kγ < + , a contradiction. 

Case2: Assume there exists a nonend vertex u  which is not adjacent to an end vertex. Then 1 2( )n u V− =  and 

1{ }u k V∪ = , which gives ( ) 12RS T n kγ < + , a contradiction. 

Conversely, let ( )0 1 2, ,f V V V=  be a Rγ -function in ( )S T . Suppose { }1 1 2, ,........., nn v v v=  be the 

number of all nonend vertices of T  is adjacent to at least two end vertices and { }1 2, ,........., ik v v v=  be the 

number of all end vertices of T . Then we consider the following cases. 

Case1: Suppose 1 1H n⊆  be the number of nonend vertices of T  adjacent exactly two end vertices. Then 

1 2H V=  and 1k V= . Or let { }jv  be the set of nonend vertices of ( )S T  adjacent to end vertices. Suppose there 

exists at least two vertices of { } { }i jv v⊂  such that { } 2iv V⊂ . Then there exists at least one vertex of 2 1n H⊂  

such that 2 2n V⊂  and { }2 1( )N n k V∩ = . Hence ( ) 2 1 12 2RS T V V n kγ = + = + . 

Case2: Suppose 2 1H n⊆  be the number of nonend vertices of T  adjacent at least three end vertices. Then 

2 2H V=  and 1k V= . Hence ( ) 2 1 12 2RS T V V n kγ = + = + . 

Theorem5: For any graph G , ( ) ( )2 RSG Gγ γ≤ . 

Proof: By Theorem B, ( )
2

p
Gγ ≤ , then ( )2 G pγ ≤ . 

Also from Theorem2, ( )RSp Gγ≤ . 

Hence ( ) ( )2 RSG Gγ γ≤ . 

Theorem6: For any nontrivial connected tree T  with 3p ≥ , ( ) ( )2RS RCT Tγ γ=  if and only if every nonend 

vertex of T  is adjacent to exactly  two end vertices. 

Proof: Let ( )0 1 2, ,f V V V=  be a Rγ -function in ( )S T  and ( )' ' ' '
0 1 2, ,f V V V=  be a RCγ -function in T . 

Suppose { }1 1 2, ,........., nn v v v=  be the set of all nonend vertices of T  and { }1 2, ,........., ik v v v=  be the set of 

all end vertices of T . Then we consider the following cases. 

Case1: Suppose { }2 1 2 1, ,........., nn v v v n= ⊂  be the set of nonend vertices of T not adjacent to end vertex. Then 

2v n∀ ∈ , '
1v V∈  in T . But 0v V∈  or 1V  or 2V  in ( )S T . If 0v V∈ , let { }; 2ie i =  be the number of edges 

incident with v , then for { } { }; 1j ie j e= ⊂ , { } 2je V∈ .If 2v V∈ , let { }; 2ke k =  be the number of edges 

incident with v , then { } 0ke V∈ . If 1v V∈ , then there exists the edges  { }; 2me m = incident with v  such that 

{ } 0me V∈  , which gives ( ) ( )2 RC RST Tγ γ> , a contradiction. 

Case2: Suppose { }3 1 2 1, ,........., nn v v v n= ⊆  be the number of nonend vertices of T  adjacent to exactly one end 

vertex and { }ie  be the number of all end edges of  T . Then ∃  { } { }{ }4 5 3, { }n n n⊂  such that { }4 in v=  and 

{ }5 jn v= , let { } { }j ie e⊂ , { }je∀  incident to { } 5jv n∀ ∈  such that { } 2i jv e V∪ =  and ( ){ } 1iN v k V∩ =  

in ( )S T . But { } '
4 5 2n n V∪ =  and '

1V φ= , which gives ( ) ( )2 RC RST Tγ γ> , a contradiction. 
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Case3: Suppose { }6 1 2 1, ,........., nn v v v n= ⊆  be the number of nonend vertices of T  adjacent to at least three 

end vertices. Then 6 2{ }n V=  and ( ){ }6 1N n k V∩ = . But '
6 2{ }n V=  and '

1V φ= , which gives 

( ) ( )2 RC RST Tγ γ< , a contradiction. 

Hence all the above cases, ( ) ( )2 RC RST Tγ γ< . 

Conversely, let T  be a tree with every nonend vertex { }1n  of T  adjacent to exactly two end vertices. 

Then 1 2{ }n V=  and 1k V=  in ( )S T . But '
1 2{ }n V=  and '

1V φ= , which gives ( ) ( )2 RC RST Tγ γ= . Hence 

the proof. 

Theorem7: Let G  be any graph. Then ( ) ( )R RSG Gγ γ≤ . 

Proof: By Theorem C, ( ) ( )2R G Gγ γ≤ . 

Also by Theorem 5, ( ) ( )2 RSG Gγ γ≤ . 

Hence ( ) ( )R RSG Gγ γ≤ . 

Theorem8: Let T  be a tree with every nonend vertex of T  adjacent to at least one end vertex. Then 

( ) 1RS T p cγ > − +  where c be the number of cut vertices of T . 

Proof: Let ( )0 1 2, ,f V V V=  be a Rγ -function in ( )S T . Suppose { }1 1 2, ,........., nn v v v=  be the number of all 

nonend vertices adjacent to exactly one end vertex and { }2 1 2, ,........., in v v v=  be the number of nonend vertices 

adjacent to at least two end vertices, let c be the number of cut vertices of T  and k  be the number of all end 
vertices of T . Then we consider the following cases. 

Case1: Suppose 1n φ= . Then 2 2n C V= =  and ( ){ }2 1N n k V∩ = . Hence 

( ) 2 12 1RS T V V p cγ = + > − + . 

Case2: Suppose 1n φ≠ . Then { } { }{ } { }3 4 1,n n n∀ ⊂  such that { }3 in v=  and { }4 jn v= , ∃  the set of edges 

{ }ie  incident with { } 3iv n∈  such that { } 2i je v V∪ =  and ( ){ } 1jN v k V∩ = , which gives 

( ) 2 12 1RS T V V p cγ = + > − + .  

 

Now from Theorem D, we can make ( )L T N=  such that ( )Rl Tγ  is a Roman line domination number. 

In the following theorem, we present our concept with ( )Rl Tγ . 

Theorem9: For any tree T , ( ) ( )Rl RST Tγ γ≤ . 

Proof: By Theorem D, ( ) ( )Rl RT Tγ γ≤ . 

Also by Theorem 7, ( ) ( )R RSG Gγ γ≤ . 

Hence ( ) ( )Rl RST Tγ γ≤ . 

Again the following theorems establish the lower bound for ( )RS Gγ  

Theorem10: Let T  be a tree with every nonend vertex of T  adjacent to at least one end vertex. Then 

( ) ( )Rn RST Tγ γ< . 

Proof: By Theorem E, ( ) 1Rn T p cγ ≤ − + . 
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Also by Theorem 8, ( )1 RSp c Tγ− + < . 

Hence ( ) ( )Rn RST Tγ γ< . 

Theorem11: For any graph G  with 2p ≥  vertices, ( ) ( )RC RSG Gγ γ≤ . 

Proof: Let G  be a graph with 2p ≥  vertices, ( )0 1 2, ,f V V V=  be a Rγ -function in ( )S G and 

( )' ' ' '
0 1 2, ,f V V V=  be a RCγ -function in G . We prove the result by induction on the number of vertices p  of 

G . 

 Assume G  is a graph with 2p = . Then ( ) 2RC Gγ =  and ( ) ( )2RS RCG Gγ γ= = . 

Assume the result is true for all graphs G  with p k= . Then ( ) ( )RC RSG Gγ γ≤ . 

Let { }1 2, ,........,RS nD v v v=  be the minimal Rγ -set of ( )S G  and { }1 2, ,........,RC iD v v v=  be the 

minimal RCγ -set of  G  such that ( )RS RSG Dγ =  and ( )RC RCG Dγ =  respectively. Suppose G  has ( )1k +  

vertices and this ( )1
th

k +  vertex is adjacent to at least one vertex of G . Then we consider the following cases. 

Case1: Suppose ( )1
th

k +  vertex is adjacent to at least one vertex of RCD  . Then we consider the following 

subcases. 

Subcase1.1: Assume ( )1
th

k +
 
vertex is adjacent to '

2v V∈ of RCD  which generates '
RCD . Then '

RSD  be the 

Roman connected dominating set of ( )S G  such that '
RC RCD D=  and '

RS RSD D> . Hence 

( ) ( )RC RSG Gγ γ< . 

Subcase1.2: Assume '
1u V∈  and v  be a ( )1

th
k +  vertex of G . If v  is adjacent to u . Then '

2u V∈  and '
0v V∈ . 

But 2u V∈  and 1v V∈ . Clearly ' 1RC RCD D= +  and '
RS RSD D> . Hence ( ) ( )RC RSG Gγ γ< . 

Subcase1.3: Assume ( )1
th

k +
 
vertex is adjacent to ' '

1 2( )V V∪ . Then '
RC RCD D= . But '

RS RSD D> . 

Hence ( ) ( )RC RSG Gγ γ< . 

Case2: Suppose ( )1
th

k +  vertex is adjacent to at least one vertex of RCV D−  , which means ( )1
th

k +  vertex is 

adjacent to '
0w V∈ . Then '

RC RCD D≥ . But '
RS RSD D> . Hence ( ) ( )RC RSG Gγ γ< . 

From all the cases, by induction we have, ( ) ( )RC RSG Gγ γ≤ . 

Theorem12: For any nontrivial tree T  with n  blocks, ( ) 2RS T nγ ≤ . 

Proof: Let T  be any nontrivial tree with n  blocks and ( )0 1 2, ,f V V V=  be a Rγ -function in ( )S T . We prove 

the result by induction on the number of blocks n  of T . 

Assume T  be a tree with 1n =  block. Then 2T P= . Hence ( ) 2 2 1 2RS T nγ = = × = . 

Assume the result is true for all the trees with n k=  blocks. Then ( ) 2RS T nγ ≤ . 

 Let { }1 2, ,.........,RS nD v v v=  be the minimal Rγ -set of ( )S T  such that ( )RS RST Dγ = . If T  has 

1k +  blocks, ' 1p p= +  vertices, ' 1q q> +  edges and this ( 1)thk +  block is adjacent to at least one block of 

T . With this new block, one vertex and one edge will be increased in T . Since each edge of T  subdivides at once, 
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hence two vertices will be increased in corresponding ( )S T . So that cardinality of RSD  will be increased in 

( )S T . Hence ( ) 2RS T nγ ≤ . 

 
Finally we obtain the Nordhauss-Gaddum type results. 
Theorem13: For any graph G  with 2p ≥ , 

1. ( ) ( ) 3 1RS RSG G pγ γ+ ≤ − . 

2. 
( ) ( ) 2( 1)RS RSG G pγ γ⋅ ≤ +
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