

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Roman Subdivision Domination in Graphs M. H. Muddebihal*1, Sumangaladevi²

*1, 2 Department of Mathematics, Gulbarga University, Gulbarga-585106, India

mhmuddebihal@yahoo.co.in

Abstract

The subdivision graph $S(G)$ of a graph *G* is the graph whose vertex set is the union of the set of vertices and the set of edges of *G* in which each edge *uv* is subdivided at once as *uw* and *wv* .

A Roman dominating function on a subdivision graph $S(G) = H$ is a function $f: V(H) \rightarrow \{0,1,2\}$ satisfying the condition that every vertex *u* for which $f(u) = 0$ is adjacent to at least one vertex *v* for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V(H)) = \sum f(v)$ $v \in V(H)$ $f(V(H)) = \sum f(v)$ ∈ $= \sum f(v)$. The minimum

weight of a Roman dominating function on a subdivision graph *H* is called the Roman subdivision domination number of *G* and is denoted by $\gamma_{RS}(G)$.

In this paper, we study the Roman domination in subdivision graph $S(G)$ and obtain some results on $\gamma_{RS}(G)$ in terms of vertices, blocks and other different parameters of the graph G , but not the members of *S G*() . Further we develop its relationship with other different domination parameters of *G* . *Subject classification number:* 05C69, 05C70.

Keywords*:* Graph/subdivision graph/domination number /Roman domination number.

Introduction

In this paper, we follow the notations of [2]. All the graphs considered here are simple, finite, nontrivial and undirected. As usual $p = |V|$ and $q = |E|$ denote the number of vertices and edges of a graph *G* respectively.

In general, we use $\langle S \rangle$ to denote the subgraph induced by the set of vertices of *S*. *N*(*v*) and *N*[*v*] denote the open and closed neighborhood of a vertex *v* .

The degree of a vertex v in a graph G is the number of edges of G incident with v and it is denoted by deg *v*. The maximum(minimum) degree among the vertices of *G* is denoted by $\Delta(G)(\delta(G))$. A vertex of degree one is called an end vertex and its neighbor is called a nonend vertex. A vertex *v* is called a cut vertex if removing it from *G* increases the number of components of *G* .

A subdivision graph $S(G)$ of a graph G is the graph whose vertex set is the union of the set of vertices and the set of edges of *G* in which each edge *uv* is subdivided at once as *uw* and *wv* .

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a function $f: V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex *u* for which $f(u) = 0$ is adjacent to at least one vertex *v* for which $f(v) = 2$.

[Muddebihal, 3(3): March, 2014] ISSN: 2277-9655

Impact Factor: 1.852

The weight of a Roman dominating function is the value $f(V) = \sum f(v)$ $v \in V$ $f(V) = \sum f(v)$ ∈ $=\sum f(v)$. The minimum weight of a Roman

dominating function on a graph *G* is called the Roman domination number and is denoted by $\gamma_{R}(G)$. This concept has the historical motivation which is suggested by Ian Stewart [3] in his article 'Scientific American' entitled "Defend the Roman Empire" and is studied by Cockayne et.al[1].

A Roman dominating function $f = (V_0, V_1, V_2)$ on a graph G is a connected Roman dominating function (CRDF) on *G* if $\langle V_1 \cup V_2 \rangle$ or $\langle V_2 \rangle$ is connected. The minimum weight of a CRDF is called a connected Roman domination number of *G* and is denoted by $\gamma_{RC}(G)$, see[7].

Analogously, we now define Roman subdivision domination number of a graph as follows.

A Roman dominating function on a subdivision graph *H* is a function $f: V(H) \rightarrow \{0,1,2\}$ satisfying the condition that every vertex *u* for which $f(u) = 0$ is adjacent to at least one vertex *v* for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V(H)) = \sum f(v)$ $v \in V(H)$ $f(V(H)) = \sum f(v)$ ∈ $= \sum f(v)$. The minimum weight of a

Roman dominating function on a subdivision graph *H* is called the Roman subdivision domination number of *G* and is denoted by $\gamma_{RS}(G)$.

Results

We use the following results for our further results.

Theorem A[4]: For any graph G , $p - q \le \gamma(G)$.

Theorem B[8]: For any graph G , $\gamma(G) \leq \frac{p}{2}$ $\gamma(G) \leq \frac{p}{2}$.

Theorem C[1]: For any graph *G* , $\gamma(G) \leq \gamma_g(G) \leq 2\gamma(G)$.

Theorem D[5]: For any tree *T*, $\gamma_R(L(T)) \leq \gamma_R(T)$.

Theorem E[6]: Let *T* be any tree with every nonend vertex of *T* adjacent to at least one end vertex. Then $\gamma_{Rn}(T) \leq p - c + 1$.

Now we list out the exact values of $\gamma_{RS}(G)$ for some standard graphs.

Theorem1:

- 1. For any path with at least three vertices $\gamma_{RS} (P_{3n}) = 4n$. Where $n = 1, 2, \dots$... $\gamma_{RS}(P_{3n+1}) = 4n+1$. γ_{RS} $(P_{3n+2}) = 4n + 2$.
- 2. For any cycle with at least three vertices

$$
\gamma_{RS}
$$
 (C_{3n}) = 4*n*. Where *n* = 1, 2,......
\n γ_{RS} (C_{3n+1}) = 4*n* + 2.
\n γ_{RS} (C_{3n+2}) = 4*n* + 3.

3. For any wheel with at least four vertices $\gamma_{RS} (W_{3n+1}) = 4n+2$. Where $n = 1, 2, \dots$. $\gamma_{RS}(W_{3n+2}) = 4n+4$.

http: // www.ijesrt.com**(C)***International Journal of Engineering Sciences & Research Technology* **[1441-1447]**

 $\gamma_{RS} (W_{3n+3}) = 4n+5$.

4. For any star $K_{1,p}$ with $p \ge 2$

$$
\gamma_{RS}\left(K_{1,p}\right)=p+2.
$$

5. For any complete graph with at least three vertices $\gamma_{\rm pc}$ $(K_{\rm n})$ = 2($p-1$).

In the following theorem we establish the lower bound for $\gamma_{RS}(G)$.

Theorem2: Let *G* be any (p,q) graph with $p \ge 2$ vertices. Then $p \le \gamma_{RS}(G)$.

Proof: Let *G* be any (p,q) graph with $p \ge 2$ vertices and $f = (V_0, V_1, V_2)$ be a γ_R -function in $S(G)$. We prove the result by induction on the number of vertices *p* of *G* .

Assume *G* is a graph with $p = 2$ vertices. Then $\gamma_{RS}(G) = 2 = p$.

Assume that the result is true for all graphs with $p = k$ vertices. Then $\gamma_{RS}(G) \geq p$.

Let $D_{RS} = \{v_1, v_2, \dots, v_n\}$ be the minimal Roman dominating set of $S(G)$ such that $\gamma_{RS}(G) = |D_{RS}|$. If *G* has $k+1=p$ vertices $(p = p+1)$, $q > q$ edges and this $(k+1)^{th}$ vertex will be adjacent to at least one vertex of G gives G' . With this new vertex in G' , at least one edge will be increased in G .

Since each edge is subdivided in G' . So that two vertices will be increased in $S(G')$ such that one vertex $v \in V_2$ or V_1 of $S(G')$, which increases the cardinality of D_{RS} . Clearly $\gamma_{RS}(G) = |D_{RS}| + 2 \ge p'$ or $\gamma_{RS}(G) = |D_{RS}| + 1 \ge p$. Hence by induction, $\gamma_{RS}(G) \ge p$.

The following lower bounds are immediate.

Corollory1: For any nontrivial connected graph G , $\alpha_0(G) + \beta_0(G) \leq \gamma_{RS}(G)$. **Corollory2:** For any nontrivial connected graph G , $\alpha_1(G) + \beta_1(G) \leq \gamma_{RS}(G)$. **Theorem3:** Let *G* be any (p,q) graph. Then $p - q < \gamma_{RS}(G)$. **Proof:** For any graph G, by Theorem A, $p - q \leq \gamma(G)$.

By Theorem B, $\gamma(G) \leq \frac{p}{2}$ $\gamma(G) \leq \frac{p}{2}$, which gives 2 $p - q \leq \frac{p}{2} < p$.

Again by Theorem 2, $p \leq \gamma_{RS}(G)$.

Hence $p - q < \gamma_{\text{pg}}(G)$.

Theorem4: For any nontrivial connected tree with $p \ge 3$, $\gamma_{RS}(T) = 2n_1 + k$ where n_1 and k are the number of all nonend vertices and end vertices of T if and only if every nonend vertex of T is adjacent to at least two end vertices.

Proof: Suppose for any tree T, $\gamma_{RS}(T) = 2n_1 + k$. Then we consider the following cases.

Case1: Assume there exists a nonend vertex *v* which is adjacent to exactly one end vertex and *e* be an edge incident with *v*. Further $n_1 = \{v_1, v_2, \dots, v_n\}$ $n \ge 1$ be the number of all nonend vertices and

 $k = \{v_1, v_2, \dots, v_i\}$ $i \ge 2$ be the number of all end vertices of *T*. Then $k - \{N(v) \cap k\} = V_1$ and $\{(n_1 - v) \cup e\} = V_2$, which gives $\gamma_{RS}(T) < 2n_1 + k$, a contradiction.

Case2: Assume there exists a nonend vertex *u* which is not adjacent to an end vertex. Then $(n_1 - u) = V_2$ and ${u \cup k} = V_1$, which gives $\gamma_{RS}(T) < 2n_1 + k$, a contradiction.

Conversely, let $f = (V_0, V_1, V_2)$ be a γ_R -function in $S(T)$. Suppose $n_1 = \{v_1, v_2, \dots, v_n\}$ be the number of all nonend vertices of *T* is adjacent to at least two end vertices and $k = \{v_1, v_2, \dots, v_i\}$ be the number of all end vertices of *T* . Then we consider the following cases.

Case1: Suppose $H_1 \subseteq n_1$ be the number of nonend vertices of *T* adjacent exactly two end vertices. Then $H_1 = V_2$ and $k = V_1$. Or let $\{v_j\}$ be the set of nonend vertices of $S(T)$ adjacent to end vertices. Suppose there exists at least two vertices of $\{v_i\} \subset \{v_j\}$ such that $\{v_i\} \subset V_2$. Then there exists at least one vertex of $n_2 \subset H_1$ such that $n_2 \subset V_2$ and $\{N(n_2) \cap k\} = V_1$. Hence $\gamma_{RS}(T) = 2|V_2| + |V_1| = 2n_1 + k$.

Case2: Suppose $H_2 \subseteq n_1$ be the number of nonend vertices of *T* adjacent at least three end vertices. Then $H_2 = V_2$ and $k = V_1$. Hence $\gamma_{RS}(T) = 2|V_2| + |V_1| = 2n_1 + k$.

Theorem5: For any graph *G* , $2\gamma(G) \leq \gamma_{RS}(G)$.

Proof: By Theorem B, $\gamma(G) \leq \frac{p}{2}$ $\gamma(G) \leq \frac{p}{2}$, then $2\gamma(G) \leq p$. Also from Theorem2, $p \leq \gamma_{RS}(G)$. Hence $2\gamma(G) \leq \gamma_{RS}(G)$.

Theorem6: For any nontrivial connected tree *T* with $p \ge 3$, $\gamma_{RS}(T) = 2\gamma_{RC}(T)$ if and only if every nonend vertex of T is adjacent to exactly two end vertices.

Proof: Let $f = (V_0, V_1, V_2)$ be a γ_R -function in $S(T)$ and $f = (V_0, V_1, V_2)$ be a γ_{RC} -function in T. Suppose $n_1 = \{v_1, v_2, \dots, v_n\}$ be the set of all nonend vertices of *T* and $k = \{v_1, v_2, \dots, v_i\}$ be the set of all end vertices of *T* . Then we consider the following cases.

Case1: Suppose $n_2 = \{v_1, v_2, \dots, v_n\} \subset n_1$ be the set of nonend vertices of *T* not adjacent to end vertex. Then $\forall v \in n_2, v \in V_1$ in *T*. But $v \in V_0$ or V_1 or V_2 in $S(T)$. If $v \in V_0$, let $\{e_i; i = 2\}$ be the number of edges incident with *v*, then for $\{e_j; j = 1\} \subset \{e_i\}$, $\{e_j\} \in V_2$. If $v \in V_2$, let $\{e_k; k = 2\}$ be the number of edges incident with *v*, then $\{e_k\} \in V_0$. If $v \in V_1$, then there exists the edges $\{e_m; m=2\}$ incident with *v* such that ${e_m \in V_0}$, which gives $2\gamma_{RC}(T) > \gamma_{RS}(T)$, a contradiction.

Case2: Suppose $n_3 = \{v_1, v_2, \dots, v_n\} \subseteq n_1$ be the number of nonend vertices of *T* adjacent to exactly one end vertex and $\{e_i\}$ be the number of all end edges of *T*. Then $\exists \{ \{n_1\}, \{n_5\} \} \subset \{n_3\}$ such that $n_4 = \{v_i\}$ and $n_5 = \{v_j\}$, let $\{e_j\} \subset \{e_i\}$, $\forall \{e_j\}$ incident to $\forall \{v_j\} \in n_5$ such that $\{v_i \cup e_j\} = V_2$ and $\{N(v_i) \cap k\} = V_1$ in $S(T)$. But $\{n_4 \cup n_5\} = V_2$ and $V_1 = \phi$, which gives $2\gamma_{RC}(T) > \gamma_{RS}(T)$, a contradiction.

http: // www.ijesrt.com**(C)***International Journal of Engineering Sciences & Research Technology* **[1441-1447]**

Case3: Suppose $n_6 = \{v_1, v_2, \dots, v_n\} \subseteq n_1$ be the number of nonend vertices of *T* adjacent to at least three end vertices. Then $\{n_6\} = V_2$ and $\{N(n_6) \cap k\} = V_1$. But $\{n_6\} = V_2$ and $V_1 = \emptyset$, which gives $2\gamma_{RC}(T) < \gamma_{RS}(T)$, a contradiction.

Hence all the above cases, $2\gamma_{BC}(T) < \gamma_{BS}(T)$.

Conversely, let *T* be a tree with every nonend vertex $\{n_1\}$ of *T* adjacent to exactly two end vertices. Then $\{n_1\} = V_2$ and $k = V_1$ in $S(T)$. But $\{n_1\} = V_2$ and $V_1 = \phi$, which gives $2\gamma_{RC}(T) = \gamma_{RS}(T)$. Hence the proof.

Theorem7: Let *G* be any graph. Then $\gamma_R(G) \leq \gamma_{RS}(G)$.

Proof: By Theorem C, $\gamma_R(G) \leq 2\gamma(G)$.

Also by Theorem 5, $2\gamma(G) \leq \gamma_{RS}(G)$.

Hence $\gamma_{R}(G) \leq \gamma_{RS}(G)$.

Theorem8: Let *T* be a tree with every nonend vertex of *T* adjacent to at least one end vertex. Then $\gamma_{RS}(T) > p - c + 1$ where *c* be the number of cut vertices of T.

Proof: Let $f = (V_0, V_1, V_2)$ be a γ_R -function in $S(T)$. Suppose $n_1 = \{v_1, v_2, \dots, v_n\}$ be the number of all nonend vertices adjacent to exactly one end vertex and $n_2 = \{v_1, v_2, \dots, v_i\}$ be the number of nonend vertices adjacent to at least two end vertices, let *c* be the number of cut vertices of T and k be the number of all end vertices of *T* . Then we consider the following cases.

Case1: Suppose $n_1 = \phi$. Then $|n_2| = |C| = |V_2|$ and $\{N(n_2) \cap k\} = V_1$. Hence $\gamma_{PS}(T) = 2|V_2| + |V_1| > p - c + 1$. **Case2:** Suppose $n_1 \neq \emptyset$. Then $\forall \{\{n_3\}, \{n_4\}\} \subset \{n_1\}$ such that $n_3 = \{v_i\}$ and $n_4 = \{v_j\}$, \exists the set of edges ${e_i}$ incident with ${v_i} \in n_3$ such that ${e_i \cup v_j} = V_2$ and ${N(v_j) \cap k} = V_1$, which gives $\gamma_{RS}(T) = 2|V_2| + |V_1| > p - c + 1$.

Now from Theorem D, we can make $L(T) = N$ such that $\gamma_{R}(T)$ is a Roman line domination number.

In the following theorem, we present our concept with $\gamma_{Rl}(T)$.

Theorem9: For any tree *T*, $\gamma_{\scriptscriptstyle{RI}}(T) \leq \gamma_{\scriptscriptstyle{RS}}(T)$. **Proof:** By Theorem D, $\gamma_{Rl}(T) \leq \gamma_R(T)$. Also by Theorem 7, $\gamma_{R}(G) \leq \gamma_{R} (G)$. Hence $\gamma_{Rl}(T) \leq \gamma_{RS}(T)$.

Again the following theorems establish the lower bound for $\gamma_{RS}(G)$

Theorem10: Let T be a tree with every nonend vertex of T adjacent to at least one end vertex. Then $\gamma_{Rn}(T) < \gamma_{RS}(T)$.

Proof: By Theorem E, $\gamma_{Rn} (T) \leq p - c + 1$.

http: // www.ijesrt.com**(C)***International Journal of Engineering Sciences & Research Technology* **[1441-1447]**

Also by Theorem 8, $p-c+1 < \gamma_{\text{BS}}(T)$. Hence $\gamma_{R_n}(T) < \gamma_{R_S}(T)$.

Theorem11: For any graph *G* with $p \ge 2$ vertices, $\gamma_{RC}(G) \le \gamma_{RS}(G)$.

Proof: Let *G* be a graph with $p \ge 2$ vertices, $f = (V_0, V_1, V_2)$ be a γ_R -function in $S(G)$ and $f' = (V_0, V_1, V_2)$ be a γ_{RC} -function in *G*. We prove the result by induction on the number of vertices *p* of *G* .

Assume *G* is a graph with $p = 2$. Then $\gamma_{RC}(G) = 2$ and $\gamma_{RS}(G) = 2 = \gamma_{RC}(G)$.

Assume the result is true for all graphs *G* with $p = k$. Then $\gamma_{RC}(G) \leq \gamma_{RS}(G)$.

Let $D_{RS} = \{v_1, v_2, \dots, v_n\}$ be the minimal γ_R -set of $S(G)$ and $D_{RC} = \{v_1, v_2, \dots, v_i\}$ be the minimal γ_{RC} -set of *G* such that $\gamma_{RS}(G) = |D_{RS}|$ and $\gamma_{RC}(G) = |D_{RC}|$ respectively. Suppose *G* has $(k+1)$ vertices and this $(k+1)^{th}$ vertex is adjacent to at least one vertex of *G*. Then we consider the following cases.

Case1: Suppose $(k+1)^{th}$ vertex is adjacent to at least one vertex of D_{RC} . Then we consider the following subcases.

Subcase1.1: Assume $(k+1)^{th}$ vertex is adjacent to $v \in V_2$ of D_{RC} which generates D_{RC} . Then D_{RS} be the Roman connected dominating set of $S(G)$ such that $|D_{RC}| = |D_{RC}|$ and $|D_{RS}| > |D_{RS}|$. Hence $\gamma_{\scriptscriptstyle RC}(G) < \gamma_{\scriptscriptstyle RS}(G)$.

Subcase1.2: Assume $u \in V_1$ and v be a $(k+1)^{th}$ vertex of *G*. If v is adjacent to u . Then $u \in V_2$ and $v \in V_0$. But $u \in V_2$ and $v \in V_1$. Clearly $|D|_{RC} = |D_{RC} + 1|$ and $|D|_{RS} > |D_{RS}|$. Hence $\gamma_{RC}(G) < \gamma_{RS}(G)$.

Subcase1.3: Assume $(k+1)^{th}$ vertex is adjacent to $(V_1 \cup V_2)$. Then $|D_{RC}| = |D_{RC}|$. But $|D_{RS}| > |D_{RS}|$. Hence $\gamma_{\scriptscriptstyle RC}(G) < \gamma_{\scriptscriptstyle RS}(G)$.

Case2: Suppose $(k+1)^{th}$ vertex is adjacent to at least one vertex of $V - D_{RC}$, which means $(k+1)^{th}$ vertex is adjacent to $w \in V_0$. Then $|D_{RC}| \geq |D_{RC}|$. But $|D_{RS}| > |D_{RS}|$. Hence $\gamma_{RC}(G) < \gamma_{RS}(G)$. From all the cases, by induction we have, $\gamma_{RC}(G) \leq \gamma_{RS}(G)$.

Theorem12: For any nontrivial tree *T* with *n* blocks, $\gamma_{RS}(T) \leq 2n$.

Proof: Let *T* be any nontrivial tree with *n* blocks and $f = (V_0, V_1, V_2)$ be a γ_R -function in $S(T)$. We prove the result by induction on the number of blocks *n* of *T* .

Assume *T* be a tree with $n = 1$ block. Then $T = P_2$. Hence $\gamma_{RS}(T) = 2 = 2 \times 1 = 2n$.

Assume the result is true for all the trees with $n = k$ blocks. Then $\gamma_{RS}(T) \leq 2n$.

Let $D_{RS} = \{v_1, v_2, \dots, v_n\}$ be the minimal γ_R -set of $S(T)$ such that $\gamma_{RS}(T) = |D_{RS}|$. If *T* has $k+1$ blocks, $p' = p+1$ vertices, $q' > q+1$ edges and this $(k+1)^{th}$ block is adjacent to at least one block of *T* . With this new block, one vertex and one edge will be increased in *T* . Since each edge of *T* subdivides at once,

hence two vertices will be increased in corresponding $S(T)$. So that cardinality of D_{RS} will be increased in

$$
S(T)
$$
. Hence $\gamma_{RS}(T) \leq 2n$.

Finally we obtain the Nordhauss-Gaddum type results. **Theorem13:** For any graph G with $p \geq 2$,

1.
$$
\gamma_{RS}(G) + \gamma_{RS}(\overline{G}) \le 3p - 1
$$
.
\n2. $\gamma_{RS}(G) \cdot \gamma_{RS}(\overline{G}) \le (p+1)^2$

References

- *[1] E. J. Cockyane, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in Graphs, Disc. Math.278(2004),11-22.*
- *[2] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).*
- *[3] Ian Stewart, Defend the Roman Empire!, Sci. Amer., 281(6)(1999), 136-139.*
- *[4] V. R. Kulli, Theory of domination in Graphs, Vishwa International Pulications, Gulbarga University, Gulbarga,(2010), 31.*
- *[5] M. H. Muddebihal, D. Basavarajappa and A. R. Sedamkar, Roman Domination in Line Graphs, Canadian. J. Sci. and Eng. Math. Vol. 1, No. 4, (2010), 69-79.*
- *[6] M. H. Muddebihal and Sumangaladevi, Roman Lict Domination in Graphs, Ultra Scientist of Physical Sciences, Vol 24(3)A,(2012)449-458.*
- *[7] M. H. Muddebihal and Sumangaladevi, Connected Roman Domination in Graphs, International Journal of Research in Engg. and Tech.Vol.2(10),(2013).*
- *[8] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ.,38, providence, (1962).*